Reproduction Quality Notice

This document is part of the Air Technical Index [ATI] collection. The ATI collection is over 50 years old and was imaged from roll film. The collection has deteriorated over time and is in poor condition. DTIC has reproduced the best available copy utilizing the most current imaging technology. ATI documents that are partially legible have been included in the DTIC collection due to their historical value.

If you are dissatisfied with this document, please feel free to contact our Directorate of User Services at [703] 767-9066/9068 or DSN 427-9066/9068.

Do Not Return This Document To DTIC

Reproduced by AIR DOCUMENTS DIVISION

HEADQUARTERS AIR MATERIEL COMMAND
WRIGHT FIELD, DAYTON, OHIO

The U.S. GOVERNMENT

IS ABSOLVED

FROM ANY LITIGATION WHICH MAY

ENSUE FROM THE CONTRACTORS IN-

FRINGING ON THE FOREIGN PATENT

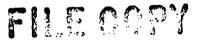
RIGHTS WHICH MAY BE INVOLVED.

REE

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ATT No 7348

WARTIME REPORT


ORIGINALLY ISSUED
December 1941 as
Advance Restricted Report

Air Documents Division
AMC, Wright Fich
Microfilm No.

SINTERVALLY FINNED HONEYCOMB RADIATORS

By Arthur N. Tifford

Langley Memorial Aeronautical Laboratory
Langley Field, Va.

Relakil

Special Occurrents of the TSRWF-6 World Freign or so the any Section Air Locuments Continue to the light (T-2) Wright Field, Dayton, Olio.

NACA

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

INTERNALLY FINNED HONEYCOMB AADIATORS

By Arthur N. Tifford

SUMHARY

Calculations are made of the performance of several internally finned radiators and a comparison with the performance of conventional honeycomb radiators is made. If fins are placed inside conventional—size tubing, the hydraulic diameter of the air passages is reduced and the size and the power expenditure of the radiator are reduced. Calculations show that in a typical case the new radiator can be designed with 55 percent less volume and will require 18 percent less power expenditure than the conventional radiator dissipating the same amount of heat. If large tubes are internally finned in such a manner as to obtain the same hydraulic diameter for the air passages as is used today, the pressure drop and the power expenditure of radiators can be markedly reduced. For example, calculations show that the new radiator will require 20 percent less pressure drop and 18 percent less power expenditure than the conventional honeycomb radiator of the same volume dissipating the same amount of heat.

INTACDUCTION

The problem of designing the cooling installation in an airplane involves a compromise between the size and the power expenditure of the installation. Many ethylene—glycol radiators of various sizes and power costs will dissipate the amount of heat required by a given engine with a reasonable pressure drop. Small radiators tend to require large power expenditures; whereas large radiators tend to require small power expenditures. Because small radiators of low power expenditure are desirable, several methods of reducing the size of radiators without adversely affecting the power expenditure have been investigated in the past. Aeducing the width of the liquid passage as much as possible has been found to be profitable because the same amount of cooling surface can thus be squeezed into a smaller volume. A limit on the width of the liquid passage is set by the clearance required by foreign materials in the coolant. Another method of increasing the amount of cooling surface per unit volume is to reduce the

.

diameter of the radiator tubes. The large number of tubes required, however, brings on manufacturing difficulties. Present practice does not permit the use of radiator tubes of less than 0.20 inch diameter.

In this paper the performance characteristics of several radiators with internally finned tubes are calculated and are compared with the performance characteristics of conventional honeycomb radiators. The object of the paper is to present typical results to be expected from the use of internally finned radiators.

ANALYSIS OF THE PROBLEM

A direct method of reducing the size of radiators that is very promising is the placing of fins inside and along the complete length of conventional radiator tubing. Figure 1 shows various arrangements of fins in the tubing. Internal finning is an efficient means of obtaining small hydraulic diameters for the air passages of radiators without increasing the number of tubes that must be handled in the manufacturing processes. Internally finned radiators have, moreover, definite advantages over conventional honeycomb radiators with the same hydraulic diameter for the uir passages.

Several factors explain the improved performance of internally finned radiators. In the conventional ethylene-glycol honeycomb radiator about 95 percent of the resistance to heat flow lies in the boundary layer on the air side. In ternal finning makes the thermal resistances on the liquid and air sides more nearly equal because the surface exposed to the air is increased without a change in the surface on the liquid side. The reduction of the total resistance to the flow of heat for a given amount of surface causes a reduction in the amount of surface required for a given heat dissipation. One adverse effect occurs because indirect ceoling surfaces, such as these internal fins, operate at lower average temperatures than the tube walls. Fin effectivenees of approximately 95 percent can be obtained, however, by using copper fins having width-to-thickness ratios of about 80.

Because the fins need be made only thick enough to efficiently carry the flow of heat (the fins do not have to supply structural strength to the radiator), because each fin contributes twice as much cooling-air surface per unit of metal weight as direct surface does, and because the

amount of coolant carried in the radiator is reduced, the weight of radiators can be reduced by internal finning. Furthermore, because of the fewer liquid passages and the thinner metal used, the ratio of open to total frontal area of an internally finned honeycomb radiator is greater than the ratio of open to total frontal area of a conventional honeycomb radiator with the same hydraulic diameter for the air passages. The greater open frontal area of an internally finned radiator allows more air passages to operate in parallel in a given frontal area. Consequently, the pressure drop required for cooling is less than the pressure drop required by a conventional radiator.

SYMBOLS

The following symbols, listed alphabetically, are used in this report. Consistent units are also given.

- a quantity defined as $\sqrt{\frac{2h_a}{k_m t_f}}$
- à total frontal area of radiator, square feet
- Ao open frontal area of radiator, square feet
- $\mathbf{C}_{\mathbf{D}}$ drag coefficient of wing
- Ct. lift coefficient of wing
- D hydraulic diameter of air passages, feet
- D_t hydraulic diameter of radiator tubes, feet
- E, fin effectiveness
- f free-area ratio, ratio of open frontal area to total frontal area
- f t free-area ratio, fins being neglected
- f, friction factor April 4qL

- g acceleration of gravity, feet per second per second
- h surface heat-transfer coefficient, Btu per second per square foot per of
- Nusselt number
- ha heat-transfer coefficient from air to tube wall, Btu per second per square foot per of
- h; heat-transfer coefficient from liquid to tube wall, Btu per second per square foot yer ${}^{\circ}F$
- E quantity of heat dissipated per unit time, Btu per second or horsepower
- k thermal conductivity, Btu per second per square foot per of per foot
- k₁ thermal conductivity of air at radiator entrance, Btu per second per square foot per ^oF per foot
- k thermal conductivity of metal, Btu per second per square foot per of per foot
- L 'radiator length, feet
- n number of fine
- $\mathbf{P}_{\mathbf{D}}$ power required to force air through radiator, foot-pounds per second or horsepower.
- Fy power required to support and propel weight of radiator, foot-pounds per second or horsepower
- Pt total power required by radiator installation, foot-pounds per second or horsepower
- p static pressure, pounds per square foot
- Δp pressure drep acress radiator, pounds her square foot
- Apf pressure drop due to skin friction, pcunds per
 square foot

أأناء والمعير ومدعوه وماسعي وياليا الرابيا والسباب

والمراجع والمحورة والواري يسويه

q dynamic pressure, pounds per square foot

- q dynamic pressure at radiator exit, pounds per square foot
- Reynolds number (PTD u.)
- h_a thermal resistance on air side $\left(\frac{1}{h_a S_a}\right)$
- h_1 thermal resistance on liquid side $\left(\frac{1}{h_1 S_1}\right)$
 - s side of hexagonal tube, feet
 - $\mathbf{S}_{\mathbf{a}}$ cooling surface, including fins, on air side, square feet
 - $\mathbf{S}_{\mathbf{f}}$ cooling surface of fins, square feet
 - S; cooling surface on liquid side, square feet
 - t tube-wall thickness, feet
 - tf thickness of fin, feet
 - T absolute temperature, or
 - To absolute atmospheric temperature, or
 - T, absolute temperature of air at radiator entrance. of
 - Ta absolute temperature of air at radiator exit, of
 - T₁ absolute liquid temperature, oF
 - T. absolute wall temperature, CF
 - v open volume of radiator, neglecting finning, cubic feet
 - vt total volume of radiator, cubic feet
 - W velocity, feet per second
 - V₁ velocity of air at radiator entrance, feet per second
 - Yo air-stream velocity, feet per second.
- w width of minimum allowable passageway on liquid side, feet

- "wr width of fin between tube walls, feet
- Wf weight of fins, pounds
- W. weight of radiator without fine, pounds
- a exit less
- factor, approximately 1.5, by which to multiply radiator weight in order to account for additional required airplane structure
- ρ . air density, slugs per cubic foot
- p₁ air density at radiator entrance, slugs per cubic foot
- pf weight density of fins, pounds per cubic foot of open volume of tubes
- ρ_1 -coolant density, pounds per cubic foot
- ρ_m metal weight density, pounds per cubic foot
- ρ weight density of radiator without fins, pounds per cubic foot of open volume of tubes
- $\eta_{\scriptscriptstyle D}$ -pumping efficiency of duct system
- nt heat-transfer efficiency
- μ coefficient of viscosity, slugs per foot per second
- μ₁ coefficient of viscosity of air at radiator entrance, slugs per foot per second

HETHOD OF CALCULATION

The procedure followed in the calculations is similar to the procedure presented in reference 1 and has been adapted to take into account the effect of the thermal resistance on the liquid side.

-,

... The power expenditure chargeable to a wing or an engine-

The state of the s

nacelle cooling installation is the sum of the power required to push the cooling air through the radiator and duct system PD/TD and the power required to carry the radiator weight PW:

$$P_{\xi} = \frac{P_{D}}{\eta_{p}} + P_{W} = \frac{A_{0}V_{1}\Delta_{p}}{\eta_{p}} + \epsilon \frac{C_{D}}{C_{L}} V_{0}(\rho_{r} + \rho_{r})v$$
 (1)

where, from reference 1,

$$A_{p} = \rho_{1} V_{1}^{2} \left[a \left(1 + \frac{T_{w} - T_{1}}{T_{1}} \eta_{t} \right) + \left(1 - \frac{f^{2}}{2} \right) \frac{T_{w} - T_{1}}{T_{1}} \eta_{t} + f_{1} \frac{L}{D} \left(2 + \frac{T_{w} - T_{1}}{T_{1}} \eta_{t} \right) \right]$$
(2)

The heat dissipation is

$$\mathbf{H} = \mathbf{g} \rho_1 \mathbf{V}_1 \mathbf{A}_{\wedge} \mathbf{a}_{\mathbf{p}} (\mathbf{T}_{\mathbf{w}} - \mathbf{T}_1) \, \eta_{\mathbf{t}} \tag{3}$$

Where

$$\eta_{t} = \frac{T_{2} - T_{1}}{T_{W} - T_{1}} = 1 - e^{-\frac{h_{0}}{\rho_{1} V_{1} o_{pg}}} \frac{L_{L}}{D}$$

or

$$\eta_{t} = 1 - e^{-4(0 + 0) \times 4 \cdot \frac{1}{2} \left(\frac{\rho_{1} V_{1} D}{\mu_{1}}\right)^{-0 \cdot 2} \cdot \frac{L}{D}}$$

in the turbulent region.

The temperature difference $T_w = T_1$ is a function of the thermal resistance on the liquid side in internally finned radiators. The ratio of the thermal resistance on the two sides is

$$\frac{R_1}{R_a} = \frac{S_0 h_0}{S_1 h_1}$$

and, therefore, the available temperature difference with 100-percent effective fins is

$$T_{w} - T_{1} = \frac{T_{1} - T_{1}}{1 + \frac{S_{0}h_{0}}{S_{1}h_{1}}}$$

Actually, the fin effectiveness is (reference 2)

where

$$a = \sqrt{\frac{2h_a}{k_m t_f}}$$

and w, is the fin width between tube walls. The overall effectiveness of the cooling surface on the air side is the sum of the fin surface multiplied by the fin effectiveness and the direct ocoling surface divided by the

total amount of surface on the air side $\left(\frac{S_f S_f + S_1}{S_a}\right)$.

The available temperature difference is, therefore,

$$T_{W} - T_{1} = \frac{T_{1} - T_{1}}{1 + \frac{S_{a}h_{a}}{S_{2}h_{1}}} \frac{S_{f}E_{f} + S_{1}}{S_{a}}$$
(4)

The detailed calculation of the performance of internally finned radiators is outlined in the appendix.

DISCUSSION

Typical results obtainable by the use of internally finned radiator tubes are represented in table I and figures 2, 3, and 4 by the values for radiators C, D, E, and F. Figure 2 shows the effect of increasing the relative thermal resistance on the liquid side. Each foint corresponds to a radiator dissipating 1000 horseower and having a frontal area of 4 square focu, an air mussage length of 6 inches, and a tytramis diameter of 1/12 inch. These radiators differ only in the amount of indirect cooling surface used on the air side. The number of fins is a measure of the amount of indirect cooling surface. The curves of figure 2 indicate that most of the gains deriv-

, N

able from internal finning without a change in the hydraulic diameter of the air passages are obtained by the use of three fins (radiator D, table I). In this case the power expenditure is reduced by 23 percent and the pressure drop is reduced by 40 percent. If radiator D were designed for the same pressure drop as radiator B (table I), the frontal area would be reduced 25 percent.

When small hydraulic diameters are used for the air passages of radiators, small volumes and small power expenditures are obtained. In practice, manufacturing difficulties associated with the large number of tubes required by the conventional honeycomb radiator restrict the minimum size of the tube diameter to about 6.20 inch. By the use of internal finning, however, small hydraulic diameters can be obtained for the air passages without increasing the number of tubes. The curves of figure 3 illustrate how internal finning reduces the size and power expenditure of the inetallation. Figure 4 shows that an increase in pressure drop is associated with a 50-percent reduction in radiator size. By a reduction in the radiator volume of 25 percent instead of 50 percent and by the use of a hydraulic diameter of 1/8 inch for the air passage, all three significant factors — the radiator volume, the power expenditure, and the pressure drop — would be reduced.

A comparison of the erformances of radiators C and D (table I), which differ physically only in that the fine of radiator C are twice as thick as the fine of radiator D, emphasizes the fact that there exist limitations on the fin thickness other than weight alone. Radiator C, with the heavier fins, requires a higher pressure drop and a higher internal power expenditure than radiator D because the 1-percent increase in over-all cooling-surface effectiveness in radiator C, as compared with radiator D, does not nearly compensate for the 5-percent reduction in even frontal area caused by the doubly thick fins. The point to be emphasized is that the use of thicker fins does not necessarily mean that the required Pressure drop and the power required to push the cooling air through the radiator will be reduced.

A large number of practical arrangements of internal fins exists. The hydraulic diameters for some of these are given in figure 1. Arrangements such as (c) or (f) in figure 1 are inherently better thermally than (b) or (e), respectively; that is, for a given weight of finning, a higher fin effectiveness is obtained. The hydraulic diameters are, however, more than 10 percent larger and the amounts of cooling surface are consequently 10 percent smaller. If all factors are considered, the over-all performance of installations finned like (c) as compared with (b), or like (f) as compared with (e), will differ negligibly when the air flow is turbulent.

As the hydraulic diameter of the air passages decreases with increased finning, the operating Reynolds number decreases. Thus, it becomes possible to sperate in the transition range between laminar and turbulent flow or even at Reynolds numbers corresponding to completely laminar flow. In such cases small angles between fins are to be avoided because the laminar boundary layer will be extremely thick in the charp corners and the surfaces forming the corners will accordingly have a greatly reduced effectiveness as far as friction and heat transfer are concerned. In effect, the fins will cause an increase in the radiator weight out of proportion to the increase in the heat dissipation per unit volume of radiator.

CCNCLUSIONS

A large number of possible arrangements of internal fins for radiators exists. By the use of these internal fins, the power expenditure and the pressure drop required for cooling can be markedly reduced. In one typical case the new radiator is calculated to require 2 percent less pressure drop and 18 percent less power expenditure than the conventional honeycomb radiator of the same volume dissipating the same amount of heat.

Internal finning can also be used to reduce the hydraulic diameter of the air passages. This reduction will decrease the size and the power expenditure of radiators. Calculations show that in a typical case the radiator with internal finning requires 55 percent less volume and 18 percent less power expenditure than the conventional radiator having the same frontal area and dissipating the same amount of heat.

Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., October 17, 1941.

-

.

APPENDIX

CALCULATION OF THE PERFORMANCE OF INTERNALLY FINNED RADIATORS

The procedure followed in the calculation of the performance of internally finned radiators is similar to the procedure presented in reference 1.

For an assumed length and hydraulic diameter of the air passages, an upproximate value for the operating Reynolds number is estimated. The corresponding value of Nusselt number is found from heat-transfer data, such us the data presented in figure 5. The heat-transfer coefficient h_a is determined and a first approximation to the fin effectiveness is obtained. The over-all effectiveness of the cooling surfaces having been determined, a first approximation to the available temperature difference $T_a - T_1$ is found from equation (1). The corresponding value of $\rho_1 V_1$ is found in figure 6, which has been obsted from equation (3) for the turbulent region. (In the transition and laminar regions, equation (3) must be used directly.) Reynolds number is now calculated and a second value for Musselt number obtained, and the process is continued until the same value of $\rho_1 V_1$ is determined in two succeeding calculations. The pressure drop is now calculable from equation (2) and the data of figure 7; the nower expenditure required is calculable from equation (1).

This procedure is repeated for each assumed radiator length. The power expenditure is then plotted against radiator volume as in figure 3.

The details of the sca-level celculations for the following assumed conditions are given in table I. Figures 3 and 4 present the results graphically.

The coolent is 97 percent othylene-glycol solution and hexagonal tubes are used.

Vo = 734 fps (500 mph)

hi = 0.20 Btu ner see per sq ft ner of

A = 4 sq ft

t = 0.005 in.

w = 0.028 in.

. .

7

Ì

1:

cn = 0.24 Btu per 1b per of

H = 1000 hp

g = 0.1

 $T_0 = 460^{\circ} + 73.5^{\circ} = 533.5^{\circ}$ F abs.

 $T_{z} = 1.60^{\circ} + 290^{\circ} = 750^{\circ} \text{ F abs.}$

ρ₂ = 69.6 lb per cu ft

ρ_m =.ρ_{copper} = 555 lb per ou ft

km = koopper = 0.06055 Btu per sen per
sq ft per of per ft

η_p = 100 percent

$$\epsilon \frac{c_D}{c_L} = 0.1$$

Allowance being made for complete adiabatic compression ahead of the radiator, the following quantities were calculated and used in the detailed calculations:

 $T_1 = 460 + 118 = 578^{\circ}$ F abs.

T₂ - T₁ = 173° F abs.

 $k_1 = 4.063 (10)^{-6}$ Btu per sec per sq ft per °F per ft

 $\rho_{\rm t} = 0.00282$ slug per ou ft

 $\mu_1 = 0.409$ alug per ft per sec

REFERENCES

- 1. Brevoort, M. J., and Leifer, M.: Radiator Design and Installation. NACA A.C.R., May 1939.
- Harper, D. R., 3d, and Brown, W. B.: Mathematical Equations for Heat Conduction in the Fins of Air-Cooled Engines. Rep. No. 158, NACA, 1923.

TABLE I .- CONCUERD VALUES FOR SIX MADIATORS

340	(E E E		**************************************		1.56 2.56 2.57 2.57 2.57	, Ri	. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
4 + Q	(dn)		79.6 70.8 77.0		78.8 75.0 75.8 78.2	er - 87 16/av	5325 5325 555 50
Ag	(hp)		28.6 28.6 5.14 5.14		XX 38 P	0.9771	24.0 28.0 31.6 35.6
j _a	(ab)						25 85 35 50 85 35 50 85 35 50 85 35 50 85 35 50 85 50 85 50 80 80 80 80 80 80 80 80 80 80 80 80 80
3 2	ê		82.28		19 5 6 E	ottes	515 43 88
٠	(E 13)		2.50 3.13 3.75 4.37		9.19.1 19.1 19.11	r-411 off	1.25
11	Ē	/ou ft	0.833 1.0ul 1.250 1.458	19/0n ft	7.11.0 983. 983. 583.	AGLETE DA	111.0 38.0 38.0 7.0 7.0
ν _G	(kp)	= 67 lb	8.4%8 0.00.4	722 - 4	42.54 6.55 6.53 6.53	i ti	5.65. 2.65. 2.4.4 2.4.4 2.4.4
8	(19/sg ft)	.00 aq ft, p _r	25. 15.15 1.2.7.	1.88 sq ft.	91.5 91.5 91.1 7.5	3, Ao = 2.72	88.19 7.19 7.19 7.19
18 P. 2		٠ ٨٥ = ۶	0.658 .835 1.031 1.219	. o. 10°	1.185 1.414 1.622 1.835	r = 0.67	1.180 1.395 1.611 1.840
T2 - T1	٤	£ = 0°75	63-4 78-3 90-7 101-7	4.0 = 2 .	95.3 106.5 113.7 120.0	S. 3: c	84.7 95.4 102.6 109.0
ş. ;	£ @	Smithator A: 1 -1n. hexagonal tubing, no fans, f = 0.75, Ao = 3.00 sq ft, pr = 67 lb/ou ft	165.7 165.1 165.9 165.9	1 das, heragonal tubing, no fise, f = 0.170, Ao = 1.86 sq ft, pr = 227 lb/ou ft	100 percent 162.0 162.8 163.5 164.4	nadistor c. 1-in. heragonal tubing, fin arrangement, f = 0.679, A ₀ = 2.72 ag ft; average over-all effectivenes = 0.977; pr = 87 lb/ou ft; tr = 0.006 in.; D = 12-in. = 0.0069 ft; Sa/Si = 3; pr = 53 lb/ou ft	(percent) 100,97.7 117.8 144.1 150.0 146.6 151.7 118.2 153.2 149.7
₁₂	<i>*</i>	oral tul	0.0569 6819.0 0950.	gonel t	0.0675 0.0571 0.0571	onal tu	51.0 421. 641. 671.
283		hexag	25.25 12.25 12.25	. i	8.4.8.5 4.8.5		0.587 .651 .693
~		1 :4 1 :4	24,600 19,900 17,100 15,300		00.00 00	00° C	6800 6000 7,600 7,900
1,4,1	(elug/eq	Radiator	184.0 386. 360.00	Radiator B;	i giri	Radistor tg . C	0.00 .353 .328 .310
HIP		<u>] </u>	3885]	8888		8838

The state of the s 1-492

RADIA TORS
20
WILES
CO: 7:C1ED
Ä
277

·····		r					Table 1 (co	ntinued)
, •	(on £¢)	ų,	2585	ē	**************************************	ë	2.2.2.2 2.1.3.2	
A C	(hp)	r - 67 16/04	25 24.15 26.00	average over-all affectivezess = 0.900; or = 12 lb/cu fit	65.75.2 57.2 51.2 61.3	r • 65 1b/ou ft;	55.5 57.5 57.5 57.5 57.5	a a y
	(hp)	9 1396°C	3888	9001	4222	9.9%6.0	25 25 5 25 5 5 26 5 5 5	va lue s
3 44	(CB)	•	REAR	0	₹83₺	1	3323	
* *	6	ctives	22.25	rtiveme	25,24,25	etiven	18 E E	94 9
•	(cu ft)	rell off	23.12. 8.12.18.	ell effe	2. 5. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	over-all affectiveness * 0.936; pr	8358	1 also f
.a	(u)	Mereks ove	0.417 0.456 556 598-	rage saar	1.00	rerage owe	25. 25. 25. 26. 26.	reent an
_R A	(dq)	ed fts av	7 4 8 8 4 4 6 6	ty no	48.2 4.83.2 5.0 5.0 5.0 5.0	47 1b/c	277.2 27.2 20.4	100 per
3	(15/eg ft)	. 40 ° 2.86	38. 25.25.25.25.25.25.25.25.25.25.25.25.25.2	A - 3.40 mg ft; of - 18 15/cu ft	312XX 18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.620, Fr	58.0 24.2 54.4	for Et =
2 2	ř	r - 27 18	1.176 1.570 1.570	0.848 0.904	0.664 1.036 1.231	f 0.751	1.187 1.407 1.655 1.965	sen givez
12 1 1	6	age at.	84.4 94.6 101.1 107.4	reneat, f	436.88 4.40.7.	S. S 1	82.3 91.5 100.0 106.6	oq swq l
	£ 3	tubing, fin arrangement, f = 0.714, A ₀ = 2.86 sq ft; swerage over-all affectiveness = 0.965; p _p = 67 lb/eu fe; = 0.0069 ft; B ₂ /S ₁ = 3; p _f = 27 lb/cu ft.	(persent) 100 96.5 116.8 115.6 150.6 115.5 152.7 117.4 154.2 118.8	heraponal tubing, fin arrangement, f = 0.846, A, D = \frac{1}{1} dn = 0.0208 ft; \$5\sqrt{3} = 3\frac{3}{1}\$ e 0.904; \$\rac{1}{2}\$	(percent) 100-90-0 112-9-128-5 146-8-132-1 119-2(134-3	Radiator F. 3-43. bezagozal tubing, fin arrangement, f = 3,751, Ao = 3.00 ag ft; average tr = 0.0039'and 0.3045 in.; D = 0.0066 ft; Sa/S; = 4,73; ft = 0.420; ft, e 47 lb/cu ft	(percent) 100 3.6 137.6 127.2 137.9 129.0 139.7 131.0 111.2 132.2	The temperature difference T_{g} - T_{1} has been given for B_{f} = 100 percent and also for average values of when different from 100 percent.
ما تم		and	1	del tub	515.03 52.03 54.03	tonel tub	0.273 .255 .237 .235	e diff.
ديع		Int. bernound	86.05.95	1 8 A	96.50 196.50 196.50 196.50	Dexa O.Jour	763	era tur feren
æ		a 1 .00.	25 12 12 12 12 12 12 12 12 12 12 12 12 12	Radiator E. Lan.	21.500 17,600 15,300 13,900	7. 3.42 .0039 and	0009 0009 0009 0009	hen dif
P ₁ V ₁	ft/sec)	Radiator D: tr = 0.003	0.380 0.539 7.11.	Radiator tr = 0	985. 289. 27.2	Radiator tf = 0	0.378 376 305 305 386	
HID		<u> </u>	8898		3882]	8888	

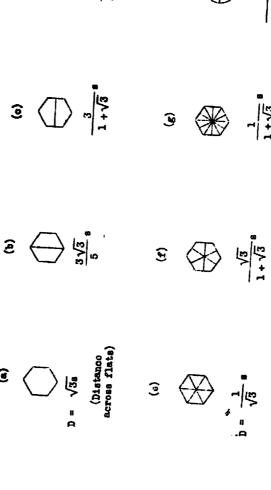
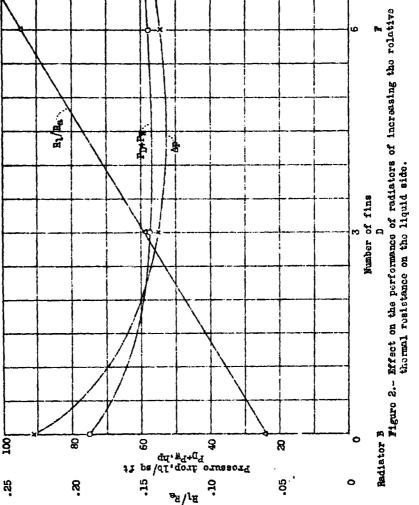
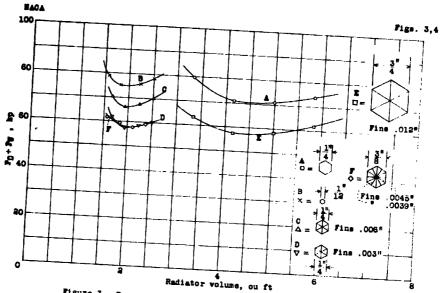




Figure 1.- Soverel arrangements of internal cooling surfaces.

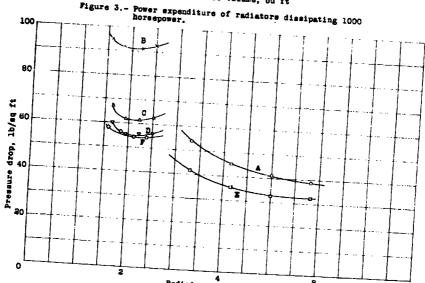


Figure 4.- Pressure drop across radiators dissipating 1000 horsepower.

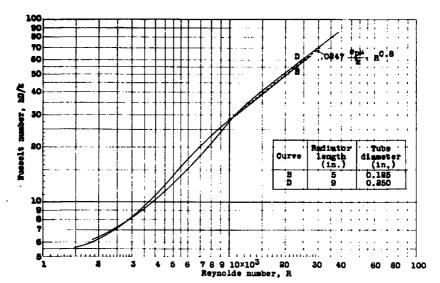


Figure 5.- Heat-transfer data taken from reference 2.

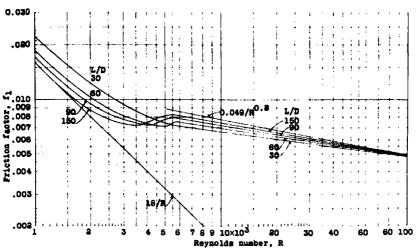
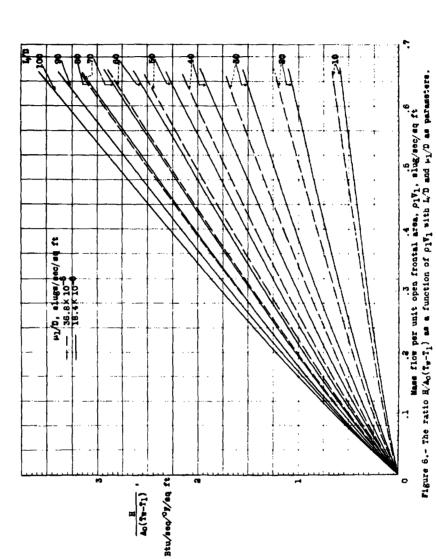



Figure 7.- Friction data taken from reference 8.

TSD(2) FORM 69 (12 KC) 47) 7348 Tifford, Arthur N. DIVISION: Power Plants, Reciprocating (6) ORIG. AGENCY NUMBER SECTION: Cooling (1) ARR-1-492 CROSS REFERENCES: Radiators - Design (78110) DEVISION AUTHOR(S) AMER. TITLE: Internally finned honeycomb radiators FORG'N. TITLE: ORIGINATING AGENCY: National divisory Committee for Aeronautics, Washington, D. C. TRANSLATION: COUNTRY LANGUAGE FORG'NCLASS U. S.CLASS. | DATE PAGES ILLUS. FEATURES Inclass Dec'41 18 8 tables, diagra, graphs JI-S-Foga ΔΩΩΥΩΔΕΎ Problem of reducing radiator size by placing fine inside of tubes is discussed. Calculations of radiator performance are compared with that of conventional radiator. Results show that internally finned radiators can dissipate the same heat as conventional radiators with same frontal area, but require 55% less volume and 18% less power expended. If radiators have same volume, the new design requires 20% less pressure drop. Note: Requests for copies of this report must be addressed to: H.A.C.A., Washington, D. C. AIR VECHNICAL INDEX . T-2, HQ., AIR MATERIEL COMMAND WRIGHT FIELD, OHIO, USAAF

175-0-31 FIAD 47 5741